
N95- 31249

/

GENERALIZED IMPLEMENTATION

OF

SOFTWARE SAFETY POLICIES t

John C. Knight

knight @ virginia, edu

Kevin G. Wika

wika @ virginia, edu

Department of Computer Science

University of Virginia

Charlottesville, VA 22903

(804) 924-7605

An Abstract Submitted to:

Nineteenth Annual Software Engineering Workshop

Software Engineering Laboratory

Goddard Space Flight Center

Greenbelt, MD

t. Supported in part by the National Science Foundation under grant number CCR-9213427 and in
part by NASA under grant number NAGI-1123-FDR

SEW Proceedings

PRECEDING PA(_E fz_-P.l'_,__'' '_ i'_OT "_!,,_,,___

265 SEL-94-O06

Generalized Implementation of Software Safety Policies
'1

Introduction

As part of a research program in the engineering of software for safety-critical sys-

tems, we are performing two case studies. The first case study, which is well underway, is

a safety-critical medical application. The second, which is just starting, is a digital control

system for a nuclear research reactor. Our goal is to use these case studies to permit us to

obtain a better understanding of the issues facing developers of safety-critical systems, and

to provide a vehicle for the assessment of research ideas.

The case studies are not based on the analysis of existing software development by

others. Instead, we are attempting to create software for new and novel systems in a process

that ultimately will involve all phases of the software lifecycle. In this abstract, we summa-

rize our results to date in a small part of this project, namely the determination and classi-

fication of policies related to software safety that must be enforced to ensure safe operation.

We hypothesize that this classification will permit a general approach to the implementation

of a policy enforcement mechanism.

The Problem

The functionality demanded by modern applications, including safety-critical

applications, frequently leads to software that is very large and complex. Functionality

requirements have increased because of the many benefits of computer-based control and

the availability of inexpensive yet powerful computing hardware. Hardware performance

limits that formerly restricted software complexity are rarely reached because of the

remarkable hardware performance now available.

Unfortunately, significant software defects tend to remain in such systems after

deployment despite extensive effort on the part of the developers [2,6]. Building these sys-

tems to perform as desired is very difficult for a number of reasons. Even the best software

development processes cannot ensure that faults are avoided completely during develop-

ment. Similarly, fault detection techniques are imperfect. Research has shown, for example,

that testing as an approach to verification cannot demonstrate sufficient levels of depend-

ability because of the sheer number of tests that are required [1].

Even building very small, simple software systems that achieve the extreme

dependability necessary for safety-critical applications has proven to be very challenging.

Formal techniques have made substantial progress and have been applied to real systems

in a number of cases, but their application to large, complex systems remains mostly

impractical. The complexity of large systems involving characteristics such as real-time

operation and distributed processing is likely to preclude any significant assurance that the

systems meet desired dependability goals if traditional techniques are used in traditional

ways.

A central question that arises is how to deal with a software system that is on the

one hand safety critical and on the other hand large and complex, i.e., so large and complex

as to preclude a complete attack on the problem of showing dependability using even the

best available techniques. We outline an approach to this problem that we are pursuing in

the next section.

SEW Proceedings 266
SEL-94-006

Generalized Implementation of Software Safety Policies

Technical Approach

An approach that has been tried in many safety-critical systems is to isolate the

problem of ensuring safe operation so that a small part of the software, often termed a ker-

nel, is responsible. This is the approach we are following but we are attempting to develop

a general, comprehensive approach to the problem by exploiting an analogy with security
kernels.

Security kernels are used to enforce access-control policies in classified information

systems. The idea of trying to exploit this technique to implement safety rather than secu-

rity, i.e., the concept of a more general safety kernel, was proposed by Rushby [5,7], among
others. The idea that Rushby suggested is different from other architectures described as

safety kernels because certain essential safety policies are enforced regardless of the

actions of the application software. This is in direct analogy with security kernels that

enforce access control with a similar degree of generality. Other safety-kernel architectures

that have been developed tend to provide a set of services that enforce required safety pol-

icies, if used appropriately by the application. This is a critical distinction.

The safety-kernel idea is of value if it is able to enforce a suitably large subset of

the required safety policies. A major benefit would be gained if this safety-kernel approach

could be implemented in a reusable manner, i.e., in such a way that the same safety kernel

implementation could be used in a variety of applications. To evaluate the safety-kernel

idea, assess its utility, and try to get some insight into generality that might be possible in

an implementation we have analyzed the two case studies at our disposal. We report our
results in the next section.

Empirical Results

We began this study by identifying the safety policies required by each application.

We then examined the two sets to ascertain whether general classes of policies existed and

whether the policies were similar in the two cases after application-dependent parameters

were removed. We begin this section by summarizing the important details of the two appli-

cations and list examples of the safety policies they require. We then discuss the resulting

structure of the policies and its implication on implementation and generality.

Magnetic Stereotaxis System

The first case study that we are engaged in is the Magnetic Stereotaxis System

(MSS). This is an investigational device for performing human neurosurgery being devel-

oped in a joint effort between the Department of Physics at the University of Virginia and

the Department of Neurosurgery at the University of Iowa [3,4]. The device operates by

manipulating a small permanent magnet (known as a "seed") within the brain using an

externally applied magnetic field. The patient is positioned at the center of six supercon-

ducting electromagnets. Under the direction of the computer, power supplies and current

controllers regulate the electric current in the electromagnets thereby producing the mag-

netic field that acts on the seed. Along each axis perpendicular to the patient's body, an X-

Ray source and camera produce fluoroscopic images for tracking the seed. By varying the

magnitude and gradient of the external field, the seed can be moved along a non-linear path

and positioned at a site requiring therapy, e.g., a tumor.

SEW Proceedings 267 SEL-94-006

Generalized Implementation of Software Safety Policies

When the MSS is in operation, there are a large number of events that could lead to

patient injury. The complete set is determined by a hazard analysis including the use of

techniques such as system fault-tree analysis. Events that could lead to patient injury

include failure of current controllers, X-Ray overdose, incorrect calculation of currents for

a seed movement, and failure to respond promptly to an increase in seed velocity. Each of

these could be the result of numerous different faults, and, in fact, the software could either

initiate or prevent many of these failures. Such failures can be prevented irrespective of

their cause and irrespective of the state of the equipment if safety policies such as the fol-

lowing (stated here informally) are enforced:

• If the seed moves faster than 2.0 mm/sec, the coil currents must be set to zero.

• If the vision system cannot locate the seed while it is being moved, the coil cur-
rents must be set to zero.

• The currents must be within 5.0 A of the value predicted by the coil control model.

• The current requested of a controller must be in the range -100 A to + 100 A.

• Before moving the seed, a reversal check must be executed to ensure that the

requested currents provide the desired direction within 5 degrees.

• An X-Ray device must be "off" for 0.2 sec before an "on" command is executed.

• The total X-Ray dose during an operation must be less than 100 millirem.

In the MSS system, a total of 42 safety policies have been identified. They are all

in complexity and breadth to these examples.similar

University of Virginia Reactor

The target of the second case study is the nuclear research reactor currently operated

by the University of Virginia. It is a 2 MW thermal, concrete-walled pool reactor. It was

originally constructed in 1959 as a 1 MW system, and it was upgraded to 2 MW in 1973.

Though only a research reactor rather than a power reactor, the issues raised are significant

and can be related easily to the problems faced by full-scale reactor systems.

The system operates using 20 to 25 plate-type fuel assemblies placed on a rectan-

gular grid plate. There are three scramable control rods, and one non-scramable regulating

rod that can be put in automatic mode. The primary process variables that are measured are:

I) Gross output, by movable fission chamber; 2) Neutron flux, by ion chamber; 3) Start-up

neutron flux and period, by BF 3 counter; 4) Core inlet and outlet temperatures, by thermo-

couples; 5) Primary system flow, by pressure gauge; 6) Control and regulating rod posi-

tions, by potentiometer; 7) Gross gamma-ray dose, by ion chamber; 8) Various limit set

switches to monitor pool level, etc.

As with the MSS, there are a large number of events that could lead to a reactor acci-

dent with the potential to cause extensive damage. Some examples of events that could

result in hazards include uncontrolled withdrawal of the reactor control rods, loss of water

in the reactor pool, failure of a coolant pump, and high radiation levels outside of the reactor

pool. Again as with the MSS, such failures can be prevented irrespective of their cause if

safety policies such as the following (again stated informally) are enforced:

SEW Proceedings 268
SEL-94-006

Generalized Implementation of Software Safety Policies

• The control rods must not be withdrawn at a rate faster than 1.5 mm/sec.

• When control parameters are adjusted, the state of the reactor must respond to

reflect the control settings.

• The position of the regulating rod must be adjusted at least once per second based

on the power output of the reactor.

If any of the following conditions is true, the control rods must be scrammed:

• A safety channel indicates a power greater than 125% of maximum power.

• The flow in the primary cooling system is below 3,400 liters/min (900 gals/min).

• The reactor inlet water temperature exceeds 105" E

• The pool level falls below 19 ft. 3 1/4 in.

• The radiation at the reactor face exceeds 2 mR/hr.

A preliminary identification of the safety policies in this application revealed a total

of 43 safety policies. As detailed requirements analysis proceeds, this number is likely to
rise.

Once the initial sets of safety policies had been identified for the two applications,

we focused on identifying common characteristics both within and between the two appli-

cations that might permit a logical organization of the two sets of safety policies. We were

seeking insight into what might be a general case in order to permit us to begin consider-

ation of a general, reusable, safety kernel. After examining a variety of possibilities, the

characteristic that permitted the most complete and systematic classification of the policies

was based on the origin and derivation of the safety policies.

Safety policies such as the examples above result from the system safety analysis,

and specify safety requirements that must be met by the various system components. In a

system safety analysis, a set of mishaps are identified along with hazards that could cause

the particular mishap. Each hazard is in turn placed at the root of a system fault tree and the

failure conditions that could result in the hazard are analyzed. The exact form of a fault tree

depends on the hazard being considered and the details of the particular application. How-

ever, we have identified a canonical fault-tree pattern for computer-controlled devices, and

we have been able to classify failure conditions according to their location and purpose

with respect to the canonical fault tree. We are thus able to classify safety policies according

to which type of condition the policy addresses, and this has yielded the following general
categories of policies:

System operation

Device failure

Software error

Software input

Sensor input

Operator error

Device operation

Device input from software

Failure response

Operator input to the software

Configuration or application data

Operator information

SEW Proceedings 269 SEL-94-006

Generalized Implementation of Software Safety Policies

Subsequent re-analysis of the two complete sets of safety policies from our two case

studies has shown that the various policies fit into the taxonomy very well. Thus, although

the applications are very different, their requirements for safe operation are remarkably

similar in basic form and differ to a large extent only in application-specific detail. Though

important, these details can be viewed as parameters that can be used to tailor a general

implementation strategy, i.e., a general-purpose safety kernel operating in a manner analo-

gous to a security kernel.

A safety kernel prototype is being developed that will enforce policies from the first

six categories of policies identified above. These are policies that originate near the top of

the canonical fault tree discussed above. They have been selected for enforcement because

they are most closely associated with the operation of the application devices. It is the

devices that actually cause a mishap, so it makes sense to enforce safety policies that are
directly related to devices. Policies from the other classes were omitted because the benefits

were not as great and the pragmatic issues of quality assurance, cost, and functional perfor-

mance would be adversely affected by enforcing policies from these classes.

Conclusions

Based on the two systems we have been studying, it appears to be the case that a

great deal of structure exists in the safety policies that have to be enforced. Given this sit-

uation, there seems to be a strong possibility that a reusable safety kernel operating inde-

pendently of the application in a manner analogous to the operation of a security kernel can

be built. Such a kernel would permit execution-time enforcement of selected safety policies

for systems too complex to verify by traditional means.

Acknowledgments

This work was supported in part by the National Science Foundation under grant

number CCR-9213427, and in part by NASA under grant number NAGI-1123-FDP.

References

1. Butler, R. W. and G. B. Finelli, "The Infeasibility of Quantifying the Reliability of Life-Critical

Real-Time Software," IEEE Transactions on Software Engineering, Vol. 19-1, pp. 3-12, Jan. 1993.

Garman, J. R., "The Bug Heard 'Round the World," ACM Software Engineering Notes Vol. 6-5,

pp. 3-10, October 1981.

3. Gillies, G. T. et al, "Magnetic Manipulation Instrumentation for Medical Physics Research,"

Review of Scientific Instruments, Vol. 65-3, pp. 533 - 562, March 1994.

Grady, M. S. et al, "Preliminary Experimental Investigation of in vivo Magnetic Manipulation:

Results and Potential Application in Hyperthermia," Medical Physics Vol. 16-2, pp. 263 - 272,

Mar/Apr. 1989.

Leveson, N. G., T. J. Shimeall, J. L. Stolzy and J. C. Thomas, "Design for Safe Software," in Pro-

ceedings AIAA Space Sciences Meeting, Reno, Nevada, 1983.

Neumann, P.G., Editor, "Risks to the Public". Software Engineering Notes.

Rushby J., "Kernels for Safety?," in Safe and Secure Computing Systems, T. Anderson Ed., Black-

well Scientific Publications, 1989, pp. 210-220.

2.

4.

5.

.

7.

SEW Proceedings 270
SEL-94-006

GENERALIZED IMPLEMENTATION

OF

SOFTWARE SAFETY POLICIES*

John C. Knight Kevin G. Wika

Department of Computer Science

University of VirNnia

Charlottesville, Virginia 22903

* Work sponsored in part by NASA, the NSF, the NRC & Motorola Inc

®
N_A GS_..._d tel - 94 - Shck I (ID Jot_l C, Y*_uglal 1994)

UVA .._

Department of Computer Science

f
THE PROBLEM WE FACE

Software Is Large And Complex In Many Safety-critical Systems:

Huge Subsystems, E.g. System Services, Windowing, The Application, Etc.

How Do We Build Safety-critical Software That Is:

- Dependable?

Cost-effective?

UVA ._
Department of Computer Science

SEW Proceedings 271 SEL-94-006

f NAIVE SYSTEM ARCHITECTURE -'_

Application
Software

Application Devices

Redundant
Hardware

• Keep It Simple, S*****

NASA GSFC_ t_- 94 - Sbdc 3 (C J_ C, _g_ 1994)

UVA j
Department of Computer Science

f REALISTIC APPLICATION ARCHITECTURE

Application Application Application

Windowing Windowing Windowing
System System System

Operating Operating Operating
System System System

Application Devices

Network

• Diverse Hardware, Network, High-performance Displays

• Extensive, Diverse And Unreliable Software, Perhaps Off-the-shelf

NASA GgFOS_ • 94- StuJc 4 (© _ C _ 1994)
UVA __
Department of Computer Science

SEW Proceedings 272
SEL-94-006

f
SAFETY REQUIREMENTS AND SAFETY POLICIES

Power Failure
Operator Error _
Sensor Failure _

Equipment Failure _
Data Error

Software Failure - - - _.

SOFTWARE

Correct Operation

• Safety Requirements Can Often Be Expressed As Safer), Policies

• Safety Policies -- Policies That "Software" Must Enforce To Avoid Hazard

Policies Such As The Following (From A Nuclear Reactor):

If the flow in the primary cooling system is below 3,400 liters/
minute, a scram must occur.

The source range must be indicating at least 2 counts�second
before a safety rod can be withdrawn.

How Do We Ensure Enforcement Of Safety Policies?

_ uvA
SASACSW-nU.._, . s_ 5 (©J_ c v,_,g_,_a) Department of Computer Science

J

f
SECURITY KERNEL CONCEPT

• Concept Is That Security Kernel Controls Access To All Information

Kernel Enforces A Set Of Security Policies Irrespective Of Application
Software' s Actions:

_ Information

_ Classified
kl,N_'N_ Application./ NNN_N_ SECURITY Data

Software,,",,\\'q

• Might A Similar Approach Work For Safety (Rushby, 1989)?

_ UVA
rosa Gsr-c__EZ.9,. s_,_ 6 _©Job*¢. r_W _,_> Department of Computer Science

J

SEW Proceedings 27 3 S EL-94-006

If SAFETY KERNEL CONCEPT

Concept Is That Safety Kernel Controls Access To All Devices

Kernel Enforces A Set Of Safety Policies Irrespective Of Application Software's
Actions:

Device Commands q

A Similar Approach Appears To Work For Safety

®
NASAGSFC./$EL-_-Shdc ?{OJ_C IQugi_t 199a)

WA j
Department of Computer Science

f
SAFETY KERNEL

Application Software

System Software

Hardware

I I

Applicaoon
Safety Kernel

System Software

Hardware

Devices Devices

Policy Enforcement Given To Smallest, Simplest Kernel Possible

Kernel Controls Access To All Devices Thereby Controlling Effect Of Software

Policy Enforcement:

- Certain Important Policies Entirely Enforced By Kernel

- Enforcement Support For Other Policies

®
SEW Proceedings 274

_A j
Department of Computer Science

SEL-94-006

f
"TRADITIONAL" KERNEL vs. SAFETY KERNEL

Safety Policy

Enforcement

Application
Software

I I

I Traditional I

_1 Kernel I

Support For I I

Policy , -,

Enforcement I

Hardware

Application
Software

Reduced

Safety

I Support

r- "i

I Safety I Safety Policy

I Kernel I Enforcement
I. .a

I Operating Sys.

[Hardware

N',SAcsrc.nn. - _ - s_ 9_©_oh.C r.,,==]_ Department of Computer Science

f CASE STUDY - MAGNETIC STEREOTAXIS SYSTEM _'N

INTERFACES
X-Ray Source

I

, Radio Frequ. System

-
Cryogenic System

Magnetic System

X-Ray System

Operator Displays

Superconducting
Coil

X-Ray Camera

--[Control System

NASA GSI_L . 94 . _ 10 (© k_a ¢- Kalg_ 1994)

Patient Therapy Re,on

'_ M.R. Images, Patient Data, Etc.

Department of Computer Science

J

SEW Proceedings 27 5 SEL-94-006

f SOME OF THE MSS SAFETY POLICIES

If the seed moves faster than 2.0 mm/sec., the coil currents must
be set to zero.

The coil currents must be within 5.0 amps of the predicted value.

The coil current requested by the application must be within the

range -100 amps to 100 amps.

An X-ray source must be "off" for 0.2 seconds before an "on"
command is executed.

The total X-ray dose during an operation must be less than 100
millirem.

Before moving the seed, a reversal check must be executed on the

requested currents to compare the predicted force with the
desired force.

And so on

NASA GS[:_/Slel . 9_. - Slide 11 (C Jol_ C IQ_gbI 1994]
[_] trVADepartment of Computer Science

J

f
CASE STUDY - UVA RESEARCH REACTOR

Cooling
Tower

I
L

Swimming
Pool

v

I
i

Control

Console

I

NASA GSFC_EL - 9a. Slalc 12 (© Johll C. Kmg_t 1994)

SEW Proceedings
276

® j
Department of Computer Science

SEL-94-006

f SOME OF THE REACTOR SAFETY POLICIES -'_

The control rods must not be withdrawn at a rate faster than 1.5
mm/sec.

The position of the regulating control rod must be adjusted at

least once per second based on the power of the reactor.

The control rods must be scrammed if a safety channel indicates

a power level greater than 125% of the authorized maximum.

The control rods must be scrammed if the pool water level fails
below 19' 3.25".

The control rods must be scrammed if the inlet water temperature

exceeds 1050 F

And so on

NASA GS F'C_tSE:L * IM - SIKI¢ 13 (ID Joan C K.mght 19_,4)
UVA
Department of Computer Science

J

f

Hazard

Analysis

SAFETY POLICY DEVELOPMENT

Fault Tree

Analysis

Failure Modes &

Effects Analysis

Specification

Other

Analysis

NASA GSPC_IEZ. - 94 - S_ 14 (© Joan C. _ 19_)
® WA j

Department of Computer Science

SEW Proceedings 277 SEL-94-O06

f
-

TAXONOMY - GENERAL SAFETY POLICIES

Case Study
One - MSS

Case StudyTwo - UVAR

General

Safety Policies
Policy

Taxonomy

NASA GSF¢/S_I - 94. SI_ 15 (C_ John C Kraght 1994)
[_ UVA

Department of Computer Science

J

f
EXAMPLE - DEVICE FAILURE DETECTION

Kernel Aware

Of Device Failure

Device Signals Environment

Failure Assertion Fails

No Command No "Heartbeat"

Response Received

_ GSFOSIL - Ill - $1i_ 16 (© lore ¢. IClal_ 1994)

SEW Proceedings

Captures Essential Content Of "All" Device Failure Detection Policies

Parameterized Implementation In Reusable Safety Kernel

Follows From Generalized System Fault Trees

®
278

j
Department of Computer Science

SEL-94-006

f

NASA GSFC.GEL - 94 - Sh_: 17 (© John C Kmghl t_94)

CONCLUSIONS

Systems Are Getting Very Complex:

- Simple Software Structures Unrealistic

- Users Need "Gee Whiz" Features

No Hope Of Verifying Everything Required:

Far Too Much Software

Off-the-shelf (Untrusted) Software Might Be Included

Safety Kernel Analogy With Security Kernel Seems Viable

Safety Policies Examined From Two Very Different Applications:

- Taxonomy Suggested By Similarity Of Policies

General System Fault Tree Patterns

General-purpose Safety Kernel For Variety Of Applications:

Seems Feasible

Significant Technical Issues In Implementation

Prototype Kernel Being Developed - Will Be Applied To Two Case Studies

UVA
Department of Computer Science

J

SEW Proceedings SEL-94-006

SEW Proceedings 280
SEL-94-006

'7 ¸ "

Session 6: Measurement

A Quantitative Comparison of Corrective and Perfective Maintenance

Joel Henry, East Tennessee State University

Does Software Design Complexity Affect Maintenance Effort?

Christopher Lott, University of Kaiserslautem

Profile of Software Engineering .Within NASA

Craig Sinclair, Science Applications International Corporation

PRECEDIt_Ia I_A_E _d'_K NOT i:'g.r:iED

SEW Proceedings 281
SEL-94-006

SEW Proceedings 282 SEL-94-006

